Suppressors of cytokine signaling 1 and 3 are upregulated in brain resident cells in response to virus-induced inflammation of the central nervous system via at least two distinctive pathways.
نویسندگان
چکیده
UNLABELLED Suppressors of cytokine signaling (SOCS) proteins are intracellular proteins that inhibit cytokine signaling in a variety of cell types. A number of viral infections have been associated with SOCS upregulation; however, not much is known about the mechanisms regulating SOCS expression during viral infection. In this study, we used two pathologically distinct intracerebral (i.c.) infection models to characterize temporal and spatial aspects of SOCS expression in the virus-infected central nervous system (CNS), and by employing various knockout mouse models, we sought to identify regulatory mechanisms that may underlie a virus induced upregulation of SOCS in the CNS. We found that i.c. infection with either lymphocytic choriomeningitis virus (LCMV) or yellow fever virus (YF) results in gradual upregulation of SOCS1/3 mRNA expression peaking at day 7 postinfection (p.i.). In the LCMV model, SOCS mRNA was expressed in brain resident cells, including astrocytes and some neurons, and for SOCS1 in particular this upregulation was almost entirely mediated by gamma interferon (IFN-γ) produced by infiltrating T cells. After infection with YF, we also found SOCS expression to be upregulated in brain resident cells with a peak on day 7 p.i., but in this model, the upregulation was only partially dependent on IFN-γ and T cells, indicating that at least one other mediator was involved in the upregulation of SOCS following YF infection. We conclude that virus-induced inflammation of the CNS is associated with upregulation of SOCS1/3 mRNA expression in brain resident cells and that at least two distinctive pathways can lead to this upregulation. IMPORTANCE In the present report, we have studied the induction of SOCS1 and SOCS3 expression in the context of virus-induced CNS infection. We found that both a noncytolytic and a cytolytic virus induce marked upregulation of SOCS1 and -3 expression. Notably, the kinetics of the observed upregulation follows that of activity within proinflammatory signaling pathways and, interestingly, type II interferon (IFN), which is also a key inducer of inflammatory mediators, seems to be essential in initiating this counterinflammatory response. Another key observation is that not only cells of the immune system but also CNS resident cells are actively involved in both the pro- and the counterinflammatory immune circuits; thus, for example, astrocytes upregulate both C-X-C-motif chemokine 10 (CXCL10) and SOCS when exposed to type II IFN in vivo.
منابع مشابه
P167: Key Role of Inflammation in Central Nervous System Damage and Disease; TNFα, IL-1
Inflammation is portion of the body's immune response and it is basically a host protective response to tissue ischemia, injury, autoimmune responses or infectious agents. Although the information presented so far points to a detrimental role for inflammation in central nervous system (CNS) disease, it may also be useful. CNS demonstrates characteristic of inflammation, and in response to damag...
متن کاملP134: Central Nervous System and Blood Biomarker in Stroke, CNS Bleeding, Epilepsy, and Traumatic CNS Injury; MicroRNAs
A Central nervous system (CNS) hemorrhage is bleeding in or around the brain and spinal cord. Reasons of CNS hemorrhage include high blood pressure, cancers, drug abuse, abnormally weak blood vessels that leakage, and trauma. Regression of CNS bleeding was confirmed to be relatively repetitive in patients with severe FV, FX, FVII and FXIII deficiencies. Generally in CNS hemorrhage, radiological...
متن کاملP 75: Inflammation in the Pathogenesis of Depression
Depression is a mental disorder that results from changes in the central nervous system (CNS) that may result from immunological abnormalities. According to the World Health Organization, major depression will become the leading cause of disability worldwide. Accumulating evidence has indicated the existence of reciprocal communication pathways between nervous, endocrine and immune systems. The...
متن کاملThe impact of COVID-19 during pregnancy on fetal brain development
The development of the brain as the most complex structure of the human body is a long process that begins in the third week of pregnancy and continues until adulthood and even until the end of life (1). Human brain myelination begins one to two months before birth in the visual system and eventually lasts until the age of two in other sensory systems and then the motor systems (4). Processes a...
متن کاملP28: The Effects of Omega-3 and 6 Fatty Acids on Hippocampus and Learning
One of the most nervous system evolution are memory and learning in humans. Learning is a skill that enhances synaptic activity in the hippocampus of prefrontal cortex. In fact, basic passive learning is communication between the conditioned and Unconditioned stimulation. Passive learning involves three steps: habit, education and remember. According to the results of investigations, the hippoc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 88 24 شماره
صفحات -
تاریخ انتشار 2014